On compact Hausdorff spaces of countable tightness

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Compact Hausdorff Spaces of Countable Tightness

A general combinatorial theorem for countably compact, noncompact spaces is given under the Proper Forcing Axiom. It follows that compact Hausdorff spaces of countable tightness are sequential under PFA, solving the Moore-Mrowka Problem. Other applications are also given.

متن کامل

Countable Compact Hausdorff Spaces Need Not Be Metrizable in Zf

We show that the existence of a countable, first countable, zerodimensional, compact Hausdorff space which is not second countable, hence not metrizable, is consistent with ZF. 1. Notation and terminology Definition 1.1. Let (X,T ) be a topological space and B a base for T . (i) X is said to be compact if every open cover U of X has a finite subcover V . X is said to be compact with respect to ...

متن کامل

Homogeneous Countable Connected Hausdorff Spaces

In 1925, P. Urysohn gave an example of a countable connected Hausdorff space [4]. Other examples have been contributed by R. Bing [l], M. Brown [2], and E. Hewitt [3]. Relatively few of the properties of such spaces have been examined. In this paper the question of homogeneity is studied. Theorem I shows that there exists a bihomogeneous countable connected Hausdorff space. Theorems II and III ...

متن کامل

Products of ¿-spaces and Spaces of Countable Tightness

In this paper, we obtain results of the following type: if /: X -» Y is a closed map and X is some "nice" space, and Y2 is a &-space or has countable tightness, then the boundary of the inverse image of each point of Y is "small" in some sense, e.g., Lindelöf or «¿¡-compact. We then apply these results to more special cases. Most of these applications combine the "smallness" of the boundaries o...

متن کامل

Modal compact Hausdorff spaces

We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend the familiar Isbell and de Vries d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1989

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1989-0930252-6